logo
Философский энциклопедический словарь

318 Логика

расширить границы демонстративного познания, к-рые до тех пор, по его мнению, почти совпадали с граница­ми математики. Он отмечал важность тождеств. истин («бессодержат. предложений») Л. для мышления, а в универсальном языке видел возможность «общей Л.», частными случаями к-рой считал силлогистику и Л. евклидовских «Начал». Лейбниц не осуществил своего замысла, но он дал арифметизацию силлоги­стики, разрешив тем самым совершенно новый для Л. вопрос — о её непротиворечивости относительно арифметики.

Программа Лейбница не вызвала всеобщего при­знания, хотя её поддержали Дж. Валлис («Логиче­ское учение» — «Institutio logicae», 1729), Г. Плуке («Филос. и теоретич. описания» — «Expositiones pliilo-sophiae theoreticae», 1782), И. Ламберт («Новый орга­нон» — «Neues Organon», 1764). Благодаря их трудам внутри филос. Л., не связанной с точными методами анализа рассуждений и носящей преим. описат. харак­тер, сложились реальные предпосылки для развития математич. Л. Однако это развитие до сер. 19 в. было приостановлено авторитетами Канта и Гегеля, считав­ших, что формальная Л.— это не алгебра, с помощью к-рой можно обнаруживать скрытые истины, что она не нуждается ни в каких новых изобретениях, а потому оценивших математич. направление как не имеющее существ. применения.

Между тем запросы развивающегося естествознания оживили почти забытое индуктивное направление в Л,— т. н. Л. науки. Инициаторами этого направле­ния стали Дж. Гершель (1830), У. Уэвелл (1840), Дж. С. Милль (1843). Последний, по примеру Ф. Бэ­кона, сделал индукцию отправной точкой критики дедукции, приписав всякому умозаключению (в основе) индуктивный характер и противопоставив силлогизму свои методы анализа причинных связей (т. н. каноны Бэкона — Милля). Критика эта, однако, не повлияла на то направление логич. мысли, к-рое наследовало идеи Лейбница. Напротив, скорее как ответ на эту кри­тику (и, в частности, на критику идей У. Гамильтона о логич. уравнениях) почти одновременно появились обобщённая силлогистика О. де Моргана (1847), вклю­чившая Л. отношений и понятие о вероятностном выводе, и «Математич. анализ логики» («The mathemati­cal analysis of logic», 1847) Дж. Буля, в к-ром автор переводит силлогизм на язык алгебры, а совершенство дедуктивного метода Л. рассматривает как свидетель­ство истинности её принципов. Позднее Буль («Иссле­дование законов мысли» — «An investigation of the laws of thought...», 1854), С. Джевонс («Чистая логи­ка» — «Pure logic», 1864), Ч. Пирс («Об алгебре логи­ки» — «On the algebra of logic», 1880), Дж. Венн («Сим-волич. логика» — «Symbolic logic», 1881), П. С. Порец-кий («О способах решения логич. равенств...», 1884) и Э. Шредер («Лекции по алгебре логики» — «Vorle­sungen über die Algebra der Logik», 1890—1905) оконча­тельно опровергли тезис о неалгебраич. характере форм мысли, создав теорию «законов мысли» как вид нечисловой алгебры. Эта реформация в Л. коснулась не только силлогистики (логики классов). В 1877 X. Мак-Колл впервые после схоластов обращается к теории критериев логич. следования и к Л. выска­зываний, а Г. Фреге («Исчисление понятий» — «Be­griffsschrift», 1879) создаёт первое исчисление высказы­ваний в строго аксиоматич. форме. Он обобщает тра-диц. понятие предиката до понятия пропозициональ­ной функции, существенно расширяющего возможно­сти отображения смысловой структуры фраз естеств. языка в формализме субъектно-нредикатного типа и одновременно сближающего этот формализм с функ­циональным языком математики. Опираясь на идеи предшественников, Фреге предложил реконструкцию традиц. теории дедукции на основе искусств. языка (ис­числения), обеспечивающего полное выявление логич. структуры мысли, всех элементарных шагов рассужде-

ния, требуемых исчерпывающим доказательством, и полного перечня осн. принципов: определений, посту­латов, аксиом, положенных в основу дедукции. Фреге использует созданный им язык Л. для формализации арифметики. Ту же задачу, но на основе более простого языка, осуществляют Дж. Пеано и его школа («Форму­ляр математики» — «Formulaire de mathematique», t. 1—2, 1895—97).

Очевидным успехом движения за математизацию Л. явилось его признание на 2-м Филос. конгрессе в Же­неве (1904), хотя в обществ. мнении оно утвердилось не сразу. Гл. идейным противником применения мате-матич. методов к системе логич. понятий был психоло­гизм в логике, к-рый воспринимал математизацию Л. как своего рода возрождение схоластики, менее всего способное поставить логические исследования на научный фундамент. Однако именно в этом своём пунк­те психологизм оказался антиисторичен. Борьба за математизацию Л. привела к мощному развитию этой науки.

После «Principle Mathematica» (1910—13) Б. Рассела и А. Уайтхеда — трёхтомного труда, систематизиро­вавшего дедуктивно-аксиоматич. построение классич. Л. (см. Логицизм), создаётся многозначная Л. (Я. Лу-касевич, Э. Пост, 1921), аксиоматизируются модальная (К. Льюис, 1918) и интуиционистская Л. (В. Гливенко, 1928; А. Гейтинг, 1930). Но главные исследования пере­носятся в область теории доказательств: уточняются правила и способы построения исчислений и изучаются их осн. свойства — независимость постулатов (П. Бер-найс, 1918; К. Гёдель, 1930), непротиворечивость (Пост, 1920; Д. Гильберт и В. Аккерман, 1928; Ж. Эр-бран, 1930) и полнота (Пост, 1920; Гёдель, 1930), появ­ляются классические работы по логической семанти­ке (А. Тарский, 1931) и теории моделей (Л. Лёвен-хейм, 1915; Т. Скулем, 1919; Гёдель, 1930; А.И.Маль­цев, 1936).

Начиная с 1930-х гг. закладываются основы изучения «машинного мышления» (теория алгоритмов — Гёдель, Эрбран, С. Клини, А. Тьюринг, А. Чёрч, Пост, А. А. Мар­ков, А. Н. Колмогоров и другие). И хотя выясняется ограниченность этого мышления, проявляющаяся, напр., в алгоритмич. неразрешимости ряда логич. проблем (Гёдель, 1931; П. С. Новиков, 1952), в невы­разимости всех содержат, истин в к.-л. едином фор­мальном языке (Гёдель, 1931), а тем самым и невыполни­мость лейбницевской идеи создания каталога всех истин вместе с их формальными доказательствами, всё же растёт сирое на применение Л. в вычислит. математике, кибернетике, технике (первоначально в форме алгеб-раич. теории релейно-контактных схем, а затем в форме более общей теории анализа и синтеза конечных авто­матов, теории алгоритмов и пр.), а также в гуманитар­ных науках: психологии, лингвистике, экономике. Совр. Л.— это не только инструмент точной мысли, но и «мысль» первого точного инструмента, электронного автомата, непосредственно в роли партнёра включён­ного человеком в сферу решения интеллектуальных задач но обработке (хранению, анализу, вычислению, моделированию, классификации) и передаче информа­ции в любой, области знания и практики.

• Аристотель, Соч., т. 2, М., 1978; Лукасевич Я., Аристотелевская силлогистика с т. зр. совр. формальной Л., пер. с англ., М., 1959; M и л л ь Д ж. С., Система Л. силлогис­тической и индуктивной, пер. с англ., М., 19142; Гиль­берт Д.,Аккерман В., Основы теоретич. Л., пер. с нем., М., 1947; Тарский А., Введение в Л. и методологию дедук­тивных наук, пер. с англ., М., 1948; Чёрч А., Введение в ма-тематич. Л., пер. с англ., т. 1, М., 1960; Попов П. С., Исто­рия Л. нового времени, М., 1960; Маковельский А. О., История Л., М., 1967; С т я ж к и н Н. И., Формирование ма-тематич. Л., М., 1967; Математич. теория логич. вывода. Сб. переводов, М., 1967; Карри X. Б., Основания математич. Л., пер. с англ., М., 1969; Марков А. А.,О логике конструк­тивной математики, М., 1972; Н о в и к о в П. С., Элементы ма­тематич. Л., M., 19732; К л и н н С. К., Математич. Л., пер, с англ., М., 1973; Φ ей с Р., Модальная Л., пер. с англ., М., 1974; Попов П. С., С т я ж к и н Н. И., Развитие логич.

идей от античности до эпохи Возрождения, М., 1974; Философия в совр. мире. Философия и Л., М., 1974; Ш е н ф и л д Д ж. Р., Математич. Л., пер. с англ., М., 1975; Т а к е у т и Г., Теория доказательств, пер. с англ., М., 1978; Драгалин А. Г., Математич. интуиционизм. Введение в теорию доказательств, Μ., 1979; Крайзель Г., Исследования по теории доказательств, пер. с англ., М., 1981; В е г k а К., К г е i s е г L., Logik — Texte. Kommentierte Auswahl zur Geschichte der modernen Logik, B., 1971; Risse W., Bibliographie logica, Bd 1—4, Hil­desheim — N. Y., 1965 — 79. M. M. Новосёлов.

ЛОГИКА ВЫСКАЗЫВАНИЙ, логика сужде­ний, пропозициональная логика, раздел совр. логики, лежащий в основе большинства её разделов в традиц. их изложении. Осн. объект Л. в. — высказывание, являющееся абстракци­ей от понятия предложения естеств. языка, в связи с чем Л. в. наз. иногда логикой предложений. Выска­зывание — это предложение, рассматриваемое в отвле­чении от его внутр. (субъектно-предикатной) струк­туры — исключительно с т. зр. его возможных истин­ностных значений: обычно истины (обозначаемой через «и») или лжи («л»). Т. о., высказывание — это предложение, о к-ром имеет смысл говорить, что оно истинно или ложно. Из элементарных высказывании, относительно к-рых вопрос о присвоении им одного из значений «и» или «л» считается заранее решённым, с помощью логических операций (играющих роль сою­зов и аналогичных им конструкций естеств. языка) строятся сложные высказывания (аналоги сложно­сочинённых и сложноподчинённых предложений), зна­чения истинности к-рых однозначно определяются ис­тинностными значениями исходных высказываний и определением данной логич. операции. В соответствии с «естественной» интерпретацией высказываний и свой­ствами логич. операций, посредством к-рых они по­строены, нек-рые из полученных т. о. формул Л. в. ока­зываются тождественно-истинными (т. е. истинными при всех распределениях истинностных значений ис­ходных элементарных формул); их наз. также тавтоло­гиями. Такие формулы выражают логические законы; их выявление — одна из осн. задач Л. в. Фиксировав нек-рые из них в качестве аксиом с помощью подходя­щих правил вывода, получают описание Л. в. в виде исчисления высказываний.

• Столл Р.Р., Множества. Логика. Аксиоматич. теории, пер. с англ., М., 1968.

ЛОГИКА ДИАЛЕКТИЧЕСКАЯ, см. в ст. Диалектика.

ЛОГИКА КЛАССОВ, раздел логики, в к-ром рассмат­риваются классы (множества) предметов, задавае­мые характеристическими свойствами этих предметов (элементов классов). В совр. логике Л. к. может пониматься как «алгебра множеств», т. е. интер­претироваться (см. Интерпретация) как совокупность закономерностей, к-рым удовлетворяют т. н. теоретико-множеств. операции: объединение (сумма), пересечение (произведение) и дополнение множеств, или же как изо­морфная этой алгебре (см. Изоморфизм и гомоморфизм) логика одноместных предикатов, в свою очередь пони­маемая как частный случай логики предикатов или как расширение логики высказываний. Изоморфизм упомя­нутых интерпретаций Л. к. обеспечивается взаимно­однозначным сопоставлением объектов, рассматривае­мых в этих интерпретациях: множествам (классам) со­поставляются высказывания о принадлежности к.-л. предмета данному множеству, объединению мно­жеств — конъюнкция соответствующих высказываний, пересечению — их дизъюнкция, а дополнению — отри­цание. Рассматривая модель (реализацию, интерпре­тацию) Л. к. на предметной области, состоящей из одного-единственного элемента, вопрос об истинности или ложности к.-л. формулы Л. к. можно свести к вопросу относительно соответствующей формулы логики высказываний, подобно к-рой Л. к. оказывает­ся, т. о., разрешимой. Поэтому в совр. логике Л. к,

ЛОГИКА 319

трактуют как одноместный фрагмент логики предика­тов, изоморфный логике высказываний.

* см. к ст. Логика.

ЛОГИКА НАУКИ, в спец. смысле дисциплина, приме­няющая понятия и технич. аппарат совр. формальной логики к анализу систем науч. знания. Термин «Л. н.» часто употребляется также для обозначения законов развития науки (логика науч. развития), правил и процедур науч. исследования (логика исследования), учения о психологич. и методологич. предпосылках науч. открытий (логика науч. открытия).

Л. н. как спец. дисциплина начала развиваться в сер. 19 в. и окончательно оформилась в 1-й четв. 20 в. под влиянием идей Фреге, Рассела и Витгенштейна. В 30-х гг. интенсивно Л. н. занимались участники Венского кружка, а также др. философы, естествоиспы­татели и математики (К. Поппер, В. Дубислав, X. Рей-хенбах и др.). Т. к. в подавляющем большинстве они стояли на позициях неопозитивизма, то на протяжении многих лет было широко распространено мнение, что Л. н. является специфически позитивистским подхо­дом к филос. и методологич. анализу науч. знания. Од­нако в действительности неопозитивистская интерпре­тация Л. н. представляет собой частный вариант её филос. истолкования, в значит. степени преодоленный уже к кон. 50-х — нач. 60-х гг. За рубежом исследова­ния по Л. н. ведутся преим. в рамках аналитич. фило­софии, критич. рационализма и феноменологии, рас­пространяясь не только на естествознание, но и на об­ласть обществ. наук, этики и теории познания.

В разработке совр. Л. н. активное участие прини­мают философы и логики, стоящие на позициях диа­лектич. материализма. В их работах центр. место за­нимают логич. анализ систем науч. знания, исследо­вания по индуктивной логике, логич. структуре теоре­тич. и эмпирич. знания естеств. и обществ. наук.

Круг осн. проблем Л. н. охватывает: 1) изучение ло­гич. структур науч. теорий; 2) изучение построения искусств. (формализованных) языков науки; 3) иссле­дование различных видов дедуктивных (см. Дедукция) и индуктивных (см. Индукция) выводов, применяемых в естеств., социальных и технич. науках; 4) анализ формальных структур исходных и производных науч. понятий и определений; 5) рассмотрение и совершенст­вование логич. структуры исследоват. процедур и опе-раций и разработка логич. критериев их эвристич. эф­фективности; 6) исследование логико-гносеологич. и ло­гико-методологич. содержания процессов абстрагиро­вания, объяснения, предвидения, экстраполяции и редукции науч. теорий, наиболее часто применяемых во всех сферах науч. деятельности.

Важным средством логич. анализа систем науч. зна­ния является применение методов формализации. Преимущество метода формализации заключается в том, что он позволяет выявить логич. связи и отно­шения и точно фиксирует правила, гарантирующие по­лучение достоверных знаний из исходных посылок дан­ной теории, выступающих после определ. логич. об­работки в качестве аксиом рассматриваемого форма­лизма. В случае дедуктивных теорий речь идёт о пра­вилах необходимого следования. Дедуктивное построе­ние теории чаще всего встречается в математике, тео­ретич. физике, теоретич. биологии и в нек-рых др. науч. дисциплинах. Правила индуктивных теорий характеризуют различные формы вероятностного сле­дования. Индуктивные теории характерны для боль­шинства эмпирич. наук, в к-рых возникают ситуации неопределённости, связанные с неполнотой информа­ции о связях, свойствах и отношениях исследуемых объектов.

Создание формализованных систем позволяет иссле­довать ряд важнейших логич. свойств содержат. тео-