logo
Философский энциклопедический словарь

320 Логика

рий, отображённых в данном формализме. К ним преж­де всего относятся непротиворечивость, полнота и не­зависимость исходных постулатов данной теории.

Обнаружение общности логич. структур различных в содержат. смысле науч. теорий открывает большие возможности для перенесения идей и методов одной теории в область другой, для обоснования возможности сведения одной теории к другой и выявления их общих понятийных и методологич. предпосылок. Это важно для унификации и упрощения систем науч. знания, особенно в условиях быстрого возникновения и раз­вития новых науч. дисциплин.

Особое место в Л. н. занимают проблемы, связанные с эмпирич. обоснованием и проверкой естеств.-науч. и социальных теорий и гипотез. Интенсивные иссле­дования в этой области показали несостоятельность раннего неопозитивистского принципа полной верифи­цируемости (см. Верификация), так же как и критерия фальсифицируемости (см. Фальсификация). Затрудне­ния, возникшие в неопозитивистской Л. н., привлекли внимание мн. логиков и философов к проблеме связи и взаимодействия логич. структур со структурами пред­метно-экспериментальной практич. деятельности, что обусловило целый ряд новых подходов к Л. н. Этим в значит. степени объясняется наметившийся среди зарубежных логиков интерес к принципам теории по­знания диалектич. материализма.

Особый интерес приобретают исследования по логич. семантике, посвящённые изучению смыслов и значений теоретич. и эмпирич. терминов в языках различ. наук. Обнаружение того, что теоретич. предикаты, с помощью к-рых выражаются понятия и формулируются законы определ. науч. теорий, не сводятся исчерпывающим обра­зом к предикатам наблюдения, фиксирующим резуль­таты непосредств. науч. наблюдений и экспериментов, выдвинуло целый ряд сложных проблем. Важнейшими среди них являются проблемы логич. анализа словарей разл. наук, правил перевода языка теории на язык наблюдений, исследования взаимодействия и соотно­шения естеств. и искусств. языков и т. д. В связи с этим особую важность приобретают работы по изуче­нию семантики таких терминов, как «система», «струк­тура», «модель», «измерение», «вероятность», «факт», «теория» и т. д. Многозначность и различные способы их употребления, обнаружившиеся в связи с быстрым развитием кибернетики, структурной лингвистики, теории систем и т. п., делают логико-методологич. анализ необходимой предпосылкой эвристич. исполь­зования подобных понятий.

Последний период (с кон. 50-х гг.) был переломным для развития Л. н. не только вследствие осознания принципиальной ограниченности её неопозитивистской интерпретации, но также и в силу того, что в этот пе­риод были сделаны наиболее значит. шаги для распро­странения идей и методов логич. анализа на область социальных наук.

• Проблемы логики науч. познания, М., 1964; Логика науч. исследования, М., 1965; Π ο п о в и ч М. В., О филос. анализе языка науки, К., 1966; Копнин П. В., Логич. основы науки, К., 1968; Ракитов А. И., Анатомия науч. знания. (Попу­лярное введение в логику и методологию науки), М., 1969; его ж е, Курс лекций по Л. н., М., 1971; его же, Филос. проблемы науки, М., 1977; Логико-филос. анализ понятийного аппарата науки, К., 1977; Логич. проблемы исследования науч. познания. Семантич. анализ языка. Сб. ст., М., 1980; Smart H. R., The logic of science, N. Υ.— L., 1931; Northrop F. S. С., The logic of the sciences and the humanities, N. Y., 1948; Pop­per K. R., The logic of scientific discovery, N. Y.—L., 1959; Harre R., An introduction to the logic of the sciences, L. — N. Y., 1966; Durbin P. R., Logic and scientific inquiry, Milwaukee, 1968; Agassi J., The logic of scientific inquiry «Synthese», 1974, v. 26, № 3—4, p. 498—514; Hesse М. В., The structure of scientific inference, Berk.— Los Ang., 1974; Tru­sted J., The logic of scientific interference. An introduction, L.— Basingstoke, 1979. А. И. Pакиmoв.

ЛОГИКА ОТНОШЕНИЙ, раздел логики, посвящённый изучению отношений между объектами различной при­роды. Эти отношения выражаются сказуемыми и ана­логичными им словами в предложениях естеств. язы-

ков. В зависимости от числа объектов, связанных дан­ным отношением, говорят о двуместных (двучленных, бинарных), трёхместных (трёхчленных, тернарных), вообще n-местных (n-членных, n-арных) отношениях, к-рые в терминах теории множеств определяются соот­ветственно как классы упорядоченных пар, троек, ...n-ок предметов нек-рой предметной области. Особенно важны бинарные отношения (если пара <х,y> при­надлежит отношению R, то говорят, что χ находится в отношении R к у), посредством к-рых определяются такие, напр., важнейшие понятия логики и математи­ки, как понятия функции и операции. Вводя для бинар­ных отношений теоретико-множеств. операции объеди­нения (суммы), пересечения (произведения) и допол­нения, получают «алгебру отношений» (синоним тер­мина «Л. о.»), роль единицы в к-рой играют отношения эквивалентности (равенства, тождества), обладающие свойствами рефлексивности (для всех x верно xRx), симметричности (из xRy следует yRx) и транзитивности (из xRy и yRz следует xRz). Теория бинарных отноше­ний допускает геометрич. интерпретацию в виде т. н. теории графов. На языке совр. математич. логики по­нятие отношения выражается посредством понятия многоместного предиката; поэтому Л. о. (исключая упомянутые выше алгебраич. и геометрич. её аспекты) потеряла самостоят. значение и является по существу составной частью логики предикатов. * Шрейдер Ю. А., Равенство, сходство, порядок, М., 1971.

ЛОГИКА ПРЕДИКАТОВ, функциональная логика, квантор пая логика, осн. раз­дел математич. логики, средствами к-рого строятся многие др. её разделы. Л. п., в отличие от логики вы­сказываний, расширением к-рой она является, учиты­вает не только связи между предложениями (выска­зываниями), но и их субъектно-предикатную структу­ру: выделяются аналоги подлежащих в предложениях естеств. языков (т. н. термы) и аналоги сказуемых — предикаты. Для этой цели выразит. средства логики высказываний пополняются спец. символами для обо­значения предикатов и термов, а дедуктивные средст­ва — правилами образования и преобразования выра­жений, содержащих эти символы. В Л. п. вводят также спец. операторы — кванторы. Аксиоматич. построе­ние Л. п. в виде исчисления предикатов включает ак­сиомы и правила вывода, позволяющие преобразовы­вать кванторные формулы и строить формальные до­казательства (напр., система аксиом и правил вывода для исчисления высказываний пополняется схемами аксиом).

Добавление к аппарату исчисления предикатов раз­личных спец. постоянных и переменных термов с ха­рактеризующими полученную предметную область кон­кретными аксиомами и схемами аксиом приводит к различным видам прикладных исчислений предика­тов, служащих формализациями различных логико-математич. теорий арифметики, алгебры, анализа, гео­метрии и др. разделов математики.

Для Л. п. и теорий, построенных на её основе, дока­зан ряд важных метатеорем, характеризующих их осн. свойства (см. Метатеория, Независимость, Непроти­воречивость, Полпота).

* К лини С. К., Введение в метаматематику, пер. с англ., М., 1957 (библ.); Ч ё ρ ч А., Введение в математич. логику, пер. с англ., т. 1, М., 1960 (библ.); Мендельсон Э., Вве­дение в математич. логику, пер. с англ., М., 1971; Нови­ков П. С., Элементы математич. логики, Μ., 19732.

ЛОГИСТИКА (греч. Λογιστική), 1) этап в развитии математич. логики, связанный с работами школы Б. Рассела (см. Логицизм); 2) архаический (идущий от Лейбница) синоним термина «математич. логика»; 3) в антич. математике под Л. понимали совокупность известных в то время вычислит.(в арифметике) и изме­рит. (в геометрии) алгоритмов — в отличие от разви­ваемой путём содержат. рассуждений «теоретич. ма­тематики». Под логистич. методом понимают метод построения формальной логики путём построения логис­тич. систем (иначе — исчислений, формальных систем).

* Ч ё ρ ч А., Введение в математич. логику, пер. с англ., т. 1,

ЛОГИЦИЗМ, направление в логико-филос. основа­ниях математики, исходящее из выдвинутого Лейб­ницем тезиса о «сводимости математики к логике», согласно к-рому математика изучает т. н. аналитич. истины, т. е. утверждения, «истинные во всех возмож­ных мирах». В систематич. виде доктрина Л. была из­ложена Фреге в «Осн. законах арифметики» («Grundge­setze der Arithmetik», Bd 1—2, 1893—1903), где основ­ное для математики понятие натурального числа сво­дилось к объёмам понятий, а теоремы арифметики дока­зывались средствами нек-рой логич. системы. Эта докт­рина была развита затем Расселом, обнаружившим парадокс (противоречие) в системе Фреге и предло­жившим в совместном с Уайтхедом трёхтомном труде «Principia Mathematica» (1910—13) т. н. теорию типов, в к-рой этот (как и другие) парадокс устранялся с по­мощью спец. иерархии логич. понятий. Однако для построения классич. математики в «Principia Mathema­tica» пришлось включить аксиомы, не удовлетворяющие критериям аналитич. истинности и характеризующие конкретный «математич. мир» и описываемый им мир реальных вещей и событий. С др. стороны, Гёделъ показал (1931), что все системы типа «Principia Mathe­matica» и более сильные (т. е. во всяком случае все сис­темы аксиоматич. арифметики и теории множеств) су­щественно неполны: их средствами нельзя доказать нек-рые формулируемые в них содержательно-истинные утверждения. Т. о., осн. тезис Л. можно считать опро­вергнутым. Однако работы Рассела и его последовате­лей (напр., У. Куайна) способствовали формированию и уточнению ряда важнейших логико-математич. и методологич. идей и развитию соответствующего фор­мального математич. аппарата.

• Клини С. К., Введение в метаматематику, пер. с англ., М., 1957, гл. 3; Френкель А.,Бар-Хиллел И., Ос­нования теории множеств, пер. с англ., М., 1966, гл. 3.

ЛОГИЧЕСКИЕ ОПЕРАЦИИ, логич. опера­торы, логич. связки, функции, преобразую­щие выражения логич. исчислений (формальных логич. систем); подразделяются на пропозициональные (сен-тенциональные) связки, с помощью к-рых образуются выражения логики высказываний, и кванторы, введе­ние к-рых позволяет расширить логику высказываний до логики предикатов. Л. о. позволяют строить слож­ные высказывания из нек-рых элементарных, подоб­но тому как союзы, союзные слова и обороты служат для построения сложных предложений из простых в естеств. языках. Напр., в классич. двузначной ло­гике, в к-рой высказывания могут быть только либо истинными, либо ложными, Л. о. конъюнкции (обозна­чается — &) интерпретируется как союз «и» и его многочисл. синонимы и оттенки («а», «да», «но», «хотя», «между тем как», «а также», «кроме того» и т. д.); дизъ­юнкции ( ) — как один из смыслов («неразделитель­ный») союза «или»; отрицание () — как частица «не» и её языковые эквиваленты; импликации ( ) — при­мерно как обороты «если ..., то ...» и «из... следует...» или глагол «влечёт»; эквиваленции (~) — как оборот «тогда и только тогда, когда» и его синонимы и т. п. Соответствие это не взаимно-однозначно и приблизи­тельно; поэтому точные определения Л. о. задаются не «переводами» их на естеств. языки, а либо посредст­вом т. н. истинностных таблиц (или таб­лиц истинности), указывающих, какое из двух ис-тинностных значений — «и» («истина») или «л» («ложь») — принимает результат применения данной Л. о. к нек-рым исходным высказываниям при каждом конкретном распределении истинностных зна­чений этих исходных высказываний, либо заданием

ЛОГИЧЕСКИЕ 321

надлежащих постулатов (логич. аксиом и правил вы­вода).

Изоморфная (см. Изоморфизм и гомоморфизм) ин­терпретируемость классич. логики высказываний в тер­минах логики классов обусловливает существование теоретико-множеств. операций, аналогичных каждой из её Л. о. в том смысле, что они подчиняются одним и тем же взаимным соотношениям и образуют буле­вы алгебры (соответственно алгебру высказыва­ний и алгебру множеств; см. Алгебра логики). * Ч ё p ч А., Введение в математич. логику, пер. с англ., т. 1, М., 1960, §§ 05, 06, 15; С то л л Р.-Р., Множества. Логика. Аксиоматич. теории, пер. с, англ., М., 1968. ЛОГИЧЕСКИЕ ОШИБКИ, ошибки, связанные с на­рушением в содержат. мыслит, актах законов и правил логики, а также с некорректным применением логич. приёмов и операций. В логике рассматриваются раз­личные виды Л. о., возникающие в процедурах опре­деления и деления понятий, в дедуктивных и индук­тивных выводах, в доказательстве и т. п. Так, наруше­ние правил определения понятия приводит к ошибоч­ным — несоразмерным, содержащим в себе порочный круг или тавтологию — дефинициям. Нарушение правил силлогизма приводит к логически неправомер­ным формам выводов, не обеспечивающим истинность заключения при условии истинности исходных посылок. Л. о. в доказательствах являются: подмена тезиса (ignoratio elenchi), ошибка, состоящая в неправиль­ности умозаключений, на к-рых строится рассуждение, недоказанное основание доказательства (petitio prin-cipii), круг в доказательстве (circulus in demonstrando), тавтология в доказательстве (idem per idem) и др. Ошибками индукции могут быть поспешные обобще­ния, напр. на базе «простого» перечисления или заклю­чение «после этого, значит по причине этого» (post hoc ergo propter hoc). Л. о., к-рые совершаются непредна­меренно, называются паралогизмами; совершаемые же преднамеренно — софизмами.

• Челпанов Г. И., Учебник логики, М., 1946; Ас­мус В. Ф., Учение логики о доказательстве и опровержении, [М.], 1954; Кондаков Н. И., Логич. словарь-справочник, M., 19752.

ЛОГИЧЕСКИЙ АТОМИЗМ, номиналистич. и плюра-листич. учение о действительности, выдвинутое Рас­селом и Витгенштейном в 10—20-х гг. 20 в. Программа Л. а. предусматривала построение логически совер­шенного языка, моделью к-рого объявлялся логич. язык. Один из осн. постулатов Л. а. — признание язы­ка образом действительности: его предложения изобра­жают сочетания объектов так же, напр., как проекция к.-л. геометрич. фигуры изображает эту фигуру. Л. а. рассматривал мир как совокупность лишь внешне свя­занных друг с другом атомарных фактов (т. е. не имею­щих составных частей). Теория Л. а. отрицала всякую закономерную внутр. связь в действительности, сводя процесс познания к бесконечному описанию атомарных фактов. Несостоятельность Л. а. была настолько оче­видна, что уже в 30-х гг. Рассел и Витгенштейн отказа­лись от своей доктрины.

ЛОГИЧЕСКИЙ ЗАКОН, термин, применяемый в ши­роком смысле для обозначения любой достаточно «об­щепринятой» нормы (закономерности) правильного рас­суждения. В формализов. языках совр. логики (исчи­слениях) Л. з. соответствуют тождественно-истинные (общезначимые) формулы, в т. ч. аксиомы этих исчис­лений, а также постулируемые для них правила вы­вода. Из существования различных систем аксиом и правил вывода для логич. (и логико-математич.) ис­числений следует, что понятие Л, з. относительно; но оно не является произвольным, поскольку выбор кон­кретной аксиоматич. системы обусловлен рядом объек­тивных закономерностей природы и мышления.

В узком смысле слова Л. з. называются, следуя антич. и ср.-век. традиции, следующий законы мышле-